ÜBER DIE ZWISCHENPHASEN BEI DER THERMOANALYSE VON MAN-GAN(II)-CARBONATEN

A. J. HEGEDÜS, GY. GYARMATHY UND GISELA BEREND

Tungsram Forschungsinstitut, 1340 Budapest (Ungarn)

F. PAULIK

Institut für Allgemeine und Analytische Chemie, Technische Universität, 1502 Budapest (Ungarn)

ABSTRACT

X-ray analysis of numerous intermediate phases which are formed temporarily during thermal analyses of the different manganese(II) carbonates in powder form at 150-720°C h⁻⁻¹ resulted in the following: (a) In hydrogen and inert gases MnO is formed immediately without generating any intermediate phases; (b) in air MnO₂ and/or MnO_{1.6} is formed as a consequence of the reoxidation while α -MnO_{1.5} and α -MnO_{1.33} are formed by decomposition, independent of whether or not their generation is indicated by TG steps or inflexions. We identified the phases which originated at the changing places of the TG curves (steps, inflexions) after quenching them to room temperature. In particular, it is remarkable on one hand that the inflexions and steps indicate the content of the intermediate oxides rather accurately, on the other hand if there are some crystal phases in the sample, partly only α -MnO_{1.5} can be detected although the oxygen index is 1.63.

ZUSAMMENFASSUNG

Die Röntgenanalyse zahlreicher Intermediärphasen, die während 150–720°C/h-Thermoanalysen verschiedener pulvriger Mn(II)-carbonate vorübergehend entstehen und bei wechselden Stellen der TG-Kurven (Stufen, Inflexionen) auf Raumtemperatur abgeschreckt und danach identifiziert wurden, ergab folgendes: (a) In Wasserstoff und in inerten Gasen entsteht ohne Zustandekommen von Zwischenphasen sofort MnO; (b) in Luft bilden sich infolge Reoxidation MnO₂ und/oder MnO_{1.6}, durch Zersetzung α -MnO_{1.5} und α -MnO_{1.33}, u.zw. unabhängig davon ob ihre Entstehung durch TG-Stufen oder -Inflexionen angedeutet wird oder nicht. Merkwürdigerweise wird einerseits die Zusammensetzung der Intermediäroxiden auch dann ziemlich genau angedeutet, wenn in der Probe mehrere Kristallphasen vorliegen; anderseits auch dann allein das α -MnO_{1.5} nachgewiesen, wenn der Sauerstoffindex 1,63 ist.

EINLEITUNG

Vor 10 Jahren berichteten wir über eine TG-Stufe, die während der TA des Mn(11)-carbonates, bei der Zusammensetzung $MnO_{\sim 1.63}$ zustandekam¹. Dieser Zusammensetzung konnte zu jener Zeit noch keine röntgenanalytisch bestätigte Oxidphase zugeordnet werden, so dass ein hypothetisches Mn_3O_5 -Oxid vermutet wurde. Damalige Guinier-Pulveraufnahmen bei Raumtemperatur, führten zu den Ergebnissen² in Tabelle 1 und damit zu dem Widerspruch, dass der thermogravimetrisch ermittelte Sauerstoffindex (1,63) wesentlich grösser ist, als der röntgenanalytisch nachgewiesene (1,50). Nachdem die Arbeiten von Oswald et al.³ erschienen sind, versuchten wir aufgrund unserer linienarmen Aufnahmen in Tabelle 1 das Feitknechtsche Mn_5O_8 -Oxid⁴ zu identifizieren, aber ohne Erfolg. Zur Durchführung neuerer RA Untersuchungen bot sich dann bis jetzt keine Gelegenheit.

Inzwischen bemerkten wir aber, dass Sulfatverunreinigung Inflexionen und/oder Stufen in der TG-Kurve der MnCO₃-Thermolyse bzw. der Wasserstoffreduktion

TABELLE I

RA DER THERMISCHEN ZWISCHENPRODUKTE DES REANAL-PURISS.-MIN(II)-CARBONATES¹ NACH ERHITZUNG

300°C	6h	400 °C 6h	500°C (5h	600°C	3h	700 °C 3	h
d	<i>I¦I</i> 1	, 	d	<i>I]I</i> 1	đ	<i>I/I</i> 1	đ	<i>1 1</i> 1
2,84	diffus		3,84	20	4,92	10	3,85	20
			2,72	100	3,84	20	2,75	10
			2,35	30	3,08	30	2,70	100
			2,00	20	2,76	100	2,49	5
			1,84	20	2,72	100	2,47	10
			1,66	70	2,48	100	2,34	30
			1,525	10	2,35	30	2,00	30
			1,45	20	2,03	20	1,84	30
			1,43	- 30	2,00	20	1,71	40
					1,84	20	1,66	80
					1,79	20	1,54]	20
					1,66	70	1,52	20
					1,525	10	1,45	20
					1,45	20	1,42	30
					1,43	60		
amorph MnCO ₃	+	amorph	amorph a-Mn=0	+ +	a-Mn±C 7-Mn±C	bi∔ bi	a-Mn ₃ O a-Mn ₂ O	+ + 1
Zusamn	ensetzung in	MnO _x :		in a fin the star of a second seco				
x = 2,5	i	2,30	1,	,63		1,52		1,54

Bemerkung: Die Identifizierung geschah auf Grund der zur Verfügung stehenden ASTM Kartei Nr. 1-0981 MnCO₂, 2-0896 a-Mn₂O₃, 6-540 7-Mn₂O₃ und 1-1127 a-Mn₃O₄. Der Umtausch auf die neuere Nr.-n 7-268 MnCO₃, 10-69 a-Mn₂O₄, 18-803 7-Mn₂O₃ und 16-154 a-Mn₃O₄ erfolgte erst später.

96

des Mn(III)-oxids verursachen und dadurch die Bildung intermediärer Oxide vortäuschen kann⁵. Beim Auftreten solcher Effekte ist es also angeraten den eventuellen Sulfateinfluss nachzuprüfen. Paulik-Paulik untersuchten hierauf ihr Präparat⁶, mit welchem sie zwei TG-Stufen bei Mn_xO_y = MnO_{1.641} bzw. Mn_rO_z = MnO_{1.553} erhalten haben, konnten jedoch keine Sulfatverunreinigung nachweisen⁷. Hegedüs-Berend bekräftigten mit einer von ihnen verlangten MnCO₃-Probe sowohl diesen Befund, als auch ihre derivatographische Aufnahme (Tabelle 2, Nr. 9), entdeckten aber statt der Sulfatverunreinigung eine mengenverwandte Chloridverunreinigung in dem Präparat⁸. Die erwähnten TG-Inflexionen und/oder TG-Stufen, bei der MnCO₃-Thermolyse und Mn₂O₃-Reduktion mit Wasserstoff, können demnach auch durch Chloridverunreinigung hervorgerufen werden.

EXPERIMENTELLER TEIL

Die TA-Messungen wurden in Normalatmosphäre mit einem MOM G-425 Derivatograph⁹, in wasserdampfhaltigen Gasen mit einer Zusatzeinrichtung¹⁰ ergänzten Adamel Chevenard-Thermowaage^{11,12} und die diffraktometrischen Röntgenanalysen (DRA) mit einem Philips PW 1010 Müller 111 Röntgenapparat durchgeführt.

Als Untersuchungsmaterialien dienten drei MnCO₃-Präparate mit minimalster Sulfat- und Chloridverunreinigung (Probe 1-4), zwei weitere mit MnCl₂- bzw. MnSO₄-Zusatz (Probe 5-6), dann natürlich diejenigen Carbonate die die fraglichen TG-Stufen^{1, 5, 6}, die regelwidrigen Reduktionshemmungen⁵, bzw. die alten Röntgenaufnahmen (Probe 7-9) lieferten und schliesslich ein "schwarzes" Mangancarbonat (Probe 10). Sie können in folgender Weise charakterisiert werden:

(1) Tungsram MnCO₃, leuchtstoffrein, Sulfat \ll 0,01%, Chlorid < 0,01%, durch uns als BaSO₄ bzw. AgCl nicht nachweisbar, hergestellt von Endrõi¹³.

(2) Merck MnCO₃, Sulfat sehr wenig, Chlorid durch uns nicht nachweisbar, Emissionsspektralanalyse (ESA) in ¹, Probe j.

(3) Riedel-de Haën $MnCO_3$ chem. rein, Sulfat 0,02% und Chlorid 0,02%, durch uns nicht nachweisbar, ESA in ¹, Probe h.

(4) Riedel-de Haën wie 3., aber andere Charge, in ¹ Probe i.

(5) Riedel-de Haën wie 3., aber mit 10 Gewicht%, aus demselben $MnCO_3$ und aus Carlo Erba HCl p.a. hergestelltem $MnCl_2 \cdot 0.51H_2O$ verunreinigt.

(6) Riedel-de Haën wie 3., aber mit 1 Gewicht %, aus demselben $MnCO_3$ und aus Merck H_2SO_4 p.a. hergestelltem $MnSO_4 \cdot 1,22H_2O$ verunreinigt.

(7) Reanal MnCO₃ puriss., Sulfat anwesend, Chlorid durch uns nicht nachweisbar⁵, ESA in ¹, Probe c.

(8) Durch Schulek–Pungor¹⁴ mit NaHCO₃-Überschuss hergestelltes MnCO₃, Sulfat anwesend, Chlorid durch uns nicht nachweisbar, ESA in ¹, Probe e.

(9) Von Paulik-Paulik benütztes⁶ MnCO₃-Präparat, Sulfat durch uns nicht nachweisbar, Chlorid anwesend, ESA: Al Spuren, Ca 1, Co Spuren, Cu 1, Fe 1, Mg 1,5, Na 3, Pb Spuren, Si Spuren¹⁵.

TABELLE 2

AUSWERTUNG DER DERIVATOGRAMME EINIGER TYPISCHEN Mn-CARBONATE VON DER ZUSAMMENSETZUNG $Mn_a^2+Mn_b^3+[(CO_3)_c(OH)_d(H_2O)_c(Cl, SO_4 und/oder andere Verunreinigungen)_r], AUFGENOMMEN IN NORMALATMOSPHÄRE BIS 1100°C$

Carl	onatprobe	Ein-	Hei-	DTG-	Peaks				
		waage (mg)	zung (°Ch ⁻¹)	(die g	rössien ur	lerstrich	en)		
				°C			-		
1.	Tungsram	431	720	395		525	575		985
2.	Merck	400	720		435	520	-		975
3a.	Riedel-de Haën	434	150	365	430	530			960
ЗЪ.	Riedel-de Haën	401	720		440	545	· · ·		980
4.	Riedel-de Haën andere Charge	402	720		420	550			975
5.	Riedel-de Haën + MnCl ₂	401	720	390	—	520		700	1005
6.	Riedel-de Haën + MnSO ₄	401	720						
7a.	Reanal	420	720		455		625		995
7Ь.	Reanal alte Aufnahmet	405	150	320	470		570		
8.	Schulek-Pungor ¹	329	150						
9a.	Paulik-Paulik ⁶	434	150	320	450	530		640	855
9Б.	Paulik-Paulik [®]	402	660	385	460		570	680	955
10.	Merck (schwarz)	401	720		410	510	585		985

(10) Merck Mangancarbonat "schwarz", Sulfat und Chlorid durch uns nicht nachweisbar.

Die Auswertung der erhaltenen Derivatogramme ist in Tabelle 2 zusammengefasst. Sie stützt sich einerseits auf unsere DRA-Ergebnisse wonach das Endprodukt (letzte Spalte) stets röntgenreiner Hausmannit (ASTM 16-154) war, anderseits auf die Annahme, dass die Zusammensetzung des Endproduktes immer genau der Formel Mn_3O_4 entspricht. Bei der Probe 7b. sind vergleichsweise die Daten des alten Derivatogramms (in ¹ Magy. Kem. Foly., Abb. 5) und bei Probe 8. die Mittelwerte der Auswertung der mit der Chevenardschen Thermowaage früher aufgenommenen TG-Kurven (in ¹ Tabelle 3) angegeben.

In Kenntnis der Thermokurven konnten die günstigsten Herstellungstemperaturen bzw. Zusammensetzungen ausgewählt und mit Hilfe des Derivatographs bzw. der Chevenardschen Thermowaage die zur DRA geeigneten, in Betreff der Zusammensetzung und der thermischen Behandlung genau definierten Präparate hergestellt werden. Die Ergebnisse, der nach schnellem Abkühlen der Proben bei Raumtemperatur durchgeführten Röntgenanalysen, liegen in der Tabelle 3 vor.

Bei der Zersetzung von grob- und feinkörnigen röntgenreinen Mn(IV)-oxiden (ASTM 12-716), die nach Hegedüs-Schlosser⁵ aus Reanal MnCO₃ hergestellt und bis zu der kritischen Zusammensetzung MnO_{-1,63} thermisch behandelt wurden (in ¹⁶ Abb. 2, 540°C, 100 min), liess sich kein Mn₅O₈, nur die Ausgangsphase β -MnO₂

TG-I	nflexioner	1		TG-Stufe	1						
Temp	eratur un	d Sau	erstoff-	Temperal	urbereich	und Sauers	10ffindex	•			
°C	MnOx	°C	MnOx	°C	MnOx	°C	MnOx	°C	MnO _x	°C	ΜπΟ _x
465	2,18	535	1,56	· · · · · · · · · · · · · · · · · · ·				605-930	1,51	990-	1,33
		480	1,50					560-935	1,45	990-	1,33
495	1,96	550	1,56					735–935	1,44	970 -	1,33
								570-930	1,50	990-	1,33
		570	1,54	<u> </u>				710-925	1,50	995-	1,33
		450	1,67	550-610	1,55			720-955	1,50	1030-	1,33
		570	1,61					710-945	1,51	1030-	1,33
		495	1,57	· · · ·		640-850	1,55	905950	1,50	1010-	1,33
370	1,93		-	500-550	1,60		<u> </u>	610-700	1,50	Aufnah 700°C	me bis
361	1,94		 '	536-643	1,63			711-933	1,52	965-	1,33
350	2,02	465	1,63	550-615	1,55			655835	1,49	870-	1,33
		410	1,65	470-540	1,55	600-665	1,52	690-850	1,50	910-	1,33
460	1,85	585	1,54					665945	1,51	995	1,33

und das Endprodukt α -Mn₂O₃ nachweisen. Demnach dürfte das Mn₅O₈ bei der Thermolyse des MnCO₃ schwerlich durch die Zersetzung des MnO₂, sondern vielmehr durch die Reoxidation von MnO zustandekommen, in guter Übereinstimmung mit der Herstellungsart a bei Oswald-Wampetich³.

DISKUSSION

Es ist bekannt, dass die thermische Zersetzung des Mn(II)-carbonates—abgesehen von den $(OH)_d$, $(H_2O)_e$, $(SO_4$, Cl, usw.)_f Gliedern der allgemeinen Formel in der Aufschrift der Tabelle 2— in inerten Gasen, CO_2 oder Wasserstoff nur einen einzigen DTG-Peak ergibt, d.h. ohne intermediären TG-Inflexionen und TG-Stufen bis MnO läuft. Bei Gegenwart von Sauerstoff wird aber die Thermolyse durch Reoxidationsprozesse überlappt, die DTG-Peaks, DTG- und TG-Inflexionen, bzw. TG-Stufen hervorrufen können. Es ist leicht einzusehen, dass die Kinetik dieser Ab- und Aufbaureaktionen von den Indizes der Formel in der Aufschrift der Tabelle 2, sowie von der spezifischen Oberfläche, der Makro- und Mikromorphologie der Probe sehr empfindlich beeinflusst wird.

Aus der Tabelle 2 kann man feststellen, dass der eine Teil der TG-Inflexionen in die Nähe des MnO_2 (Mittelwert: $MnO_{1,98}$), der andere Teil (1,56 1,56 1,54 1,67 1,61 1,57 1,63 1,65) in die Nähe des $Mn_5O_8^{3.17}$ (Mittelwert: $MnO_{1,60}$) fällt. Bei den

	Thermusche	Zusanmen-	Verhillin	ls der nach	igewiesenen Kri	stallphasen in	Skalenteilen (ler
	Ammining	In MnOr	L'CHERIQU	MnsOa.	ASTM 20-718	d(Å) 2.797.	<i>liki</i> 311. <i>Ill</i> i	2
		1		u-MniOs	10-69	2,720	222	8
				y-MngOa	6-540	2,480	503	88
				"Oful "	16-154	2,764	610	3
			AfrisOn	u-Mi103	,-MilaOa	n-MisOu	unbekannte Phase	
3a. Riedel-de Haën	150°C h ⁻¹ bis 540°C	1.56		21				I
3b. Ricdel-de Hatn	720°C h ⁻¹ bis 540	1.75	61	52		43	1	
Riedel-de Hatn	720°C h-1 bis 560	1,63	17	5 2	I	43	ľ	
5. Riedel-de Hatn + MnCla	720°C h ⁻¹ bis 560	1,55	1	4		115	+	
7a. Reanal	150°C h ⁻¹ bis 540	~ 1,63	4	25	F	I	ľ	-
7b. Reanal alto Guinier-	6h bel 500	1,63	I	100%	I		, 1	
Reanal -Aufnahmen ¹	3h bei 600	1,52	I.	75%	25%	1	ľ	
Reanal	3h bei 700	1,54	I	%0%	I	10%	Ĩ	
7c. Reanal neue DRA	6h bei 500	1,62	ł	10	I	1	1	•
Reanal Aufnahmen	3h bei 600	1,55	1	120	Ĩ	J	I	
Reanal	3h bei 700	1,53	I	120	I	I	ſ	
8. Schulek-Pungor	150°C h ⁻¹ bis 600	~ 1,63	25	13		6	I	
8b. Schulck-Pungor Adamel-Wange	150 °C h-1 bis 600	~ 1,63	2 5	R	I	Ĭ	Ī	
8c. Schulek-Pungor Adamel-Wange in								
$O_a + M_a O$	150 °C h-1 bis 600	~ 1,63	36	\$5	I	1	l	
8d. Schulck-Pungor Adminel-Waage in								
Luft + HrO	150°C h-1 bis 600	~ 1,63	80	38	1	1	Ĩ	
Schulck-Pungor Adame!-Wange in								
Luft + H ₃ O	150°C h ⁻¹ bis 500	2 1,63	z	16	I	1	I	
9a. Paulik-Paulik	150°C h-1 bis 470	1,63	0	53		·]	ſ	
9b. Paulik-Paulik	660°C h ⁻¹ bis 540	1,55	2	130	I	34	I	
Paulik-Paulik	660°C h ⁻¹ bis 620	1,52]	200	1	59	1	
10. Merck (schwarz)	Unbehandelt, 54,7%	Mn und 4%	H10,~5	0% MnCO	s und ~ $50\% a$.	Mn ₃ O ₅		

100

TABELLE 3

angegebenen Aufheizgeschwindigkeiten sind vor der TG-Stufe des α -MnO_{1,5} nur dann TG-Stufen zustandegekommen, wenn Verunreinigungen vorhanden waren. Die angegebenen DTG-Peaks richten sich auf der Originalaufnahme nach den TG-Inflexionen und -Stufen, bzw. nach den abwechselnd erscheinenden exothermen DTA-Peaks (Reoxidation und/oder amorph \rightarrow kristalline Umwandlung) der DTA-Kurven, die bis zur Ausbildung der α -MnO_{1,5}-Kristallphase, von Aufnahme zu Aufnahme sehr verschiedenartig ablaufen.

Die DRA-Befunde der Tabelle 3 bestätigen die vorübergehende Bildung des Mn_5O_8 während der TA, u.zw. unabhängig davon, ob eine TG-Inflexion oder -Stufe zwischen MnCO₃ und MnO_{1,5} zustandekommt oder nicht (z.B. Probe 3b). Langsamere Aufheizung, schonungsvollere Reoxidation und Wasserdampf begünstigen die bessere Auskristallisierung dieses Oxids. Es muss ausdrücklich betont werden, dass zwischen MnCO₃ und MnO_{1,5}, ja öfters sogar auch zwischen MnCO₃ und MnO_{1,333}, bei den angegebenen Aufheizgeschwindigkeiten, stets Phasengemische und nie eine einzige Phase nachgewiesen wurde, und dass die TG-Inflexionen und TG-Stufen trotzdem ziemlich genau nur die Zusammensetzung der beiden existierenden Zwischenphasen MnO₂ und MnO_{1,6} avisierten. In der Stufe des Mn_xO_y-Oxids von Paulik-Paulik⁶ liess sich Mn₅O₈ und α -Mn₂O₃, in der Stufe ihres Mn_xO₂-Oxids α -Mn₂O₃ und α -Mn₃O₄ nachweisen (Probe 9b). Für die erste Stufe kann also das MnO_{1,6}, für die zweite jedoch vorläufig nur die Chloridverunreinigung verantwortlich gemacht werden. Die Entdeckung eines neuen unbekannten Oxids (etwa von der Zusammensetzung MnO_{1,55} und/oder MnO_{1,53}) ist uns leider nicht gelungen.

In der früheren Arbeit¹ wurde statt dem ursprünglich identifizierten γ -Mn₂O₃ deshalb das α -Mn₃O₄ angegeben, weil diese beiden Phasen isomorph sind und die Temperatur der vermutlichen polymorphen α - γ -Umwandlung des Mn₂O₃ über dem thermochemischen Existenzgebiet des Mn₂O₃, d.h. im Existenzgebiet des Mn₃O₄ liegt¹⁸; und wahrscheinlich auch noch deshalb, weil die γ -Mn₂O₃-Phase im Laufe unserer Untersuchungen sonst nie vorgekommen ist. Auch die genau wiederholte Herstellung der früheren Proben (Tabelle 3, Präparate 7b) und ihre DRA Untersuchung (Tabelle 3, Präparate 7c) erbrachte nicht den erhofften nochmaligen Nachweis dieser γ -Mn₂O₃-Phase. Aus der Tatsache, dass bei den Sauerstoffindizes x = 1,63-1,53 allein die Gegenwart der α -Mn₂O₃-Phase bestätigt werden kann, ziehen wir die Folgerung, dass entweder eine amorphe Phase den Sauerstoffüberschuss verträgt.

LITERATUR

- A. J. Hegedüs und K. Martin, Mikrochim. Acta, (1966) 833; bzw. Magy. Kem. Foly., 72 (1966) 404.
- 2 V. Stefániay, RA Untersuchung der thermischen Zwischenprodukte des Reanal-p.a.-Mangan (II)-carbonates, Arbeitstagebuch, TUNGSRAM Forschungsinstitut, Budapest, 8.-11.12.1964.
- 3 H. R. Oswald, W. Feitknecht und M. J. Wampetich, Nature, 207 (1965) 72; bzw. H. R. Oswald und M. J. Wampetich, Helv. Chim. Acta, 50 (1967) 2023.
- 4 W. Feitknecht, Pure Appl. Chem., 9 (1964) 434.

- 5 A. J. Hegedűs und G. Berend, Mikrochim. Acta, 1972 512; bzw. A. J. Hegedűs und Gy. Schlosser, Magy. Kem. Foly., 74 (1968) 267.
- 6 F. Paulik und J. Paulik, Thermochim. Acta, 3 (1971) 17.
- 7 F. Paulik, Opponentenmeinung über die Dissertation "Ergebnisse kombinierter thermoanalytischer Untersuchungen in der TUNGSRAM-Forschung" von A. J. Hegedüs, Ungarische Akademie der Wissenschaften, Budapest, 1974.
- 8 A. J. Hegedüs, Antwort auf die Opponentenmeinung von F. Paulik, Ung. Akad. Wiss., Budapest, 1974.
- 9 L. Erdey, F. Paulik und J. Paulik, Acta Chim. Acad. Sci. Hung., 10 (1956) 61; und J. Paulik, Hung. Sci. Instrum., (1973) 45.
- 10 O. C. Saizew und T. U. Bulgakowa, Zh. Fiz. Khim., 39 (1965) 3115.
- 11 C. Duval, Mikrochem., 35 (1950) 242,
- 12 A. J. Hegedüs, Magy. Kem. Lapja, 8 (1953) 146.
- 13 P. Endröi, TUNGSRAM Forschungsinstitut, 1340 Budapest, 1975.
- 14 E. Schulek und E. Pungor, Magy. Kem. Foly., 56 (1950) 213.
- 15 Angegeben durch Klara Horkay, vergleichbar mit den spektralanalytischen Daten der 1. Literaturstelle, Tungsram Forschungsinstitut, Budapest, 1974.
- 16 A. J. Hegedüs, Magy. Kem. Foly., 72 (1966) 79; Acta Chim. Acad. Sci. Hung., 46 (1965) 311; bzw. Mikrochim. Acta (1966) 853.
- 17 N. Yamamoto, M. Kiyama und T. Takada, Jpn. J. Appl. Phys., 12 (1973) 1827.
- N. G. Schmahl et al., Arch. Eisenhüttenwesen, 34 (1964) 511; J. Electrochem. Soc., 112 (1965) 365; Z. Phys. Chem. Neue Folge, 63 (1969) 111; F. Shenouda und S. Aziz, J. Appl. Chem., 17 (1967) 258; A. Z. Hed und D. S. Tannhauser, J. Electrochem. Soc., 117 (1967) 314; M. LeBlanc und G. Wehner, Z. Phys. Chem., A168 (1933) 59.

102